Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 355: 141866, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565375

RESUMO

Biochar-based materials for air treatment have gained significant attention for removing health-detrimental volatile organic compounds (VOCs) and particulate matter (PM) in indoor air settings. However, high turnaround time, multiple pretreatment processes involved, and high pore size and low surface area (>10 µm, <100 m2 g-1) of lignocellulosic feedstocks demand alternative biochar feedstock material. Considering this, we designed a simple first-of-its-kind indoor air scrubbing material using diatoms-enriched microalgae biochar. In the present study, the microalgae were cultivated on waste anaerobic digestate (biogas slurry) and were pyrolyzed at three different temperatures: 300 °C (BC300), 500 °C (BC500), and 700 °C (BC700). The BC500 and BC700 showed the highest removal efficiencies (99 %) for total volatile organic carbons (TVOCs) and formaldehyde (HCHO) at concentrations of 1.22 mg m-3 HCHO and 8.57 mg m-3 TVOC compared to 50% efficiency obtained with commercially available surgical, cloth, and N95 masks. The biochar obtained showed a high Brunauer-Emmett-Teller (BET) surface area of 238 m2 g-1 (BC500) and 480 m2 g-1 (BC700) and an average pore size of 9-11 nm due to the mesoporous characteristic of diatom frustules. The comparatively poor performance of BC300 was due to lower surface area (150 m2 g-1) arising from incomplete organic removal, as evidenced by FESEM-EDX and FTIR. The high removal efficiencies in BC500 and BC700 were also attributed to the presence of reactive functional groups such as -OH and R-NH2. Concurrently, the average particulate matter (PM10, PM2.5, and PM1) removal efficiency for BC500 and BC 700 ranged between 66 and 82.69 %. The PM removal performance of BC500 and BC700 was lower (15-20%) than commercially available masks. Overall, the present study highlights the importance of diatoms (reactive Si) present inside the pores of microalgal biochar for enhanced removal of PM, TVOCs, and HCHO at temperatures above 500 °C. This complete approach signifies a step towards establishing a self-sustainable and circular process characterized by minimal waste generation for indoor air treatment.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Carvão Vegetal , Microalgas , Compostos Orgânicos Voláteis , Material Particulado/análise , Compostos Orgânicos Voláteis/análise , Poluição do Ar em Ambientes Fechados/análise , Formaldeído , Poluentes Atmosféricos/análise , Monitoramento Ambiental
2.
J Hazard Mater ; 467: 133747, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38350323

RESUMO

Rania-Khan Chandpur site, (Kanpur Dehat, Uttar Pradesh, India), one of the highly Chromium (Cr) contaminated sites in India due to Chromite Ore Processing Residue (COPR), has been investigated at the field-scale. We found that the area around the COPR dumps was hazardously contaminated with the Cr where its concentrations in the surface water and groundwater were > 40 mgL-1, its maximum contents in the COPRs and in the soils of the adjoining lands were 9.6 wt% and 3.83 wt%, respectively. By exploring the vegetation and microbial distribution across the site, we advocate the appropriateness of Cynodon dactylon, Chrysopogon zizanioides, Cyperus sp., and Typha angustifolia as the most suitable phytoremediation agent because their association with Cr remediating bacterial species (Pseudomonas sp., Clostridium sp. and Bacillus sp.) was strong. Using this remarkable information for the bioremediation projects, this site can be re-vegetated and bioaugmented to remediate Cr in soils, waterlogged ditches, surface water, and in groundwater systems.


Assuntos
Cromo , Microbiota , Índia , Solo , Água
3.
Environ Res ; 228: 115868, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37040856

RESUMO

Enzymatic (laccase mediated) decolorization of dyes remains inefficient for recalcitrant dyes, which can be better handled by electrocoagulation (EC). However, EC is energy intensive and produce large amount of sludge. In light of the same, present study offers a promising solution for the treatment of textile effluent meeting surface discharge norms, using hybridization of enzymatic and electrocoagulation treatment. The findings revealed best color removal (90%) of undiluted (raw) textile effluent (4592 hazen) is achievable by employing EC using zinc-coated iron electrode at current density 25 mA cm-2 followed by partially purified laccase (LT) treatment, and activated carbon (AC) polishing at ambient conditions. Overall, the decolorization performance of Hybrid EC-LT integrated AC approach was 1.95 times better than only laccase treatment. Also, the sludge generation from Hybrid EC-LT integrated AC (0.7 g L-1) was 3.3 times lesser than EC alone (2.1 g L-1). Therefore, the present study recommends Hybrid EC-LT integrated AC could be potential approach to treat complex textile effluent sustainably with lower energy input and waste sludge generation.


Assuntos
Lacase , Esgotos , Indústria Têxtil , Eletrocoagulação , Corantes , Carvão Vegetal , Resíduos Industriais/análise
4.
Environ Pollut ; 308: 119626, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35716891

RESUMO

Microplastics (MPs) released from both primary and secondary sources affect the functioning of aquatic system. These MPs and components leached, can interact with aquatic organisms of all trophic levels, including the primary producers, such as microalgae. Considering the ecological value of microalgae and the toxicological effects of MPs towards them, this review provides: (1) a detailed understanding of the interactions between MPs and microalgae in the complex natural environment; (2) a discussion about the toxic effects of single type and mixtures of plastic particles on the microalgae cells, and (3) a discussion about the impacts of MPs on various features of microalgae -based bioremediation technology. For this purpose, toxic effects of MPs on various microalgal species were compiled and plastic components of MPs were ranked on the basis of their toxic effects. Based on available data, ranking for various plastic components was found to be: Polystyrene (PS) (rank 1) > Polyvinyl Chloride (PVC) > Polypropylene (PP) > Polyethylene (PE) (rank 4). Furthermore, the review suggested the need to understand joint toxicity of MPs along with co-contaminants on microalgae as the presence of other pollutants along with MPs might affect microalgae differently. In-depth investigations are required to check the impact of MPs on microalgae-based wastewater treatment technology and controlling factors.


Assuntos
Microalgas , Poluentes Químicos da Água , Microplásticos/toxicidade , Plásticos/toxicidade , Poliestirenos/toxicidade , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...